Math 601 Midterm 2 Sample

This exam has 10 questions, for a total of 100 points +5 bonus points.
Please answer each question in the space provided. You need to write full solutions. Answers without justification will not be graded. Cross out anything the grader should ignore and circle or box the final answer.

Question	Points	Score
1	15	
2	10	
3	10	
4	15	
5	10	
6	10	
7	10	
8	10	
9	10	
Total:	100	

Question	Bonus Points	Score
Bonus Question 1	5	
Total:	5	

Question 1. (15 pts)

Determine whether each of the following statements is true or false. You do NOT need to explain.
(a) An $n \times n$ matrix A is diagonalizable if and only if A has n distinct eigenvalues.
(b) A square matrix P is orthogonal if and only if the columns of P form an orthonormal set.
(c) A square matrix is invertible if and only if its determinant is nonzero.
(d) A set of nonzero orthogonal vectors are always linearly independent.
(e) If $\Delta(t)=(t-2)^{3}(t+1)(t-4)$ is the characteristic polynomial of a matrix A, then A has at least 3 linearly independent eigenvectors.

Solution:

(a) False (e.g. the identity matrix)
(b) True
(c) True
(d) True
(e) True

Question 2. (10 pts)

Determine whether the matrix $A=\left[\begin{array}{lll}2 & 3 & 2 \\ 0 & 2 & 0 \\ 0 & 2 & 2\end{array}\right]$ is diagonalizable.

Solution: Use cofactor expansion along the first column

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
2-\lambda & 3 & 2 \\
0 & 2-\lambda & 0 \\
0 & 2 & 2-\lambda
\end{array}\right|=(2-\lambda)^{3}
$$

So $\lambda=2$ is an eigenvalue with multiplicity 3 .
Now solve for the eigenvectors belonging to $\lambda=2$, i.e. the kernel of the matrix

$$
\left|\begin{array}{lll}
0 & 3 & 2 \\
0 & 0 & 0 \\
0 & 2 & 0
\end{array}\right|
$$

So there is only one linearly independent eigenvector $v=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.
We need 3 linearly independent eigenvectors for A to be diagonalizable. By the above calculation, we see that A is not diagonalizable.

Question 3. (10 pts)
The eigenvalues and corresponding eigenvectors of the matrix $A=\left[\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right]$ are $\lambda_{1}=$ -2 with $v_{1}=(1,1,0)^{T}, \lambda_{2}=-2$ with $v_{2}=(1,0,-1)^{T}$ and $\lambda_{3}=4$ with $v_{3}=(1,1,2)^{T}$. Find the general solution to the system

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x} .
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1} e^{-2 t}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+c_{2} e^{-2 t}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+c_{3} e^{4 t}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

In other words,

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} e^{-2 t}+c_{2} e^{-2 t}+c_{3} e^{4 t} \\
c_{1} e^{-2 t}+c_{3} e^{4 t} \\
-c_{2} e^{-2 t}+2 c_{3} e^{4 t}
\end{array}\right]
$$

Question 4. (15 pts)
Recall that $S=\left\{1, t, t^{2}\right\}$ is a basis of $\mathbb{P}_{2}(t)$. Let $F: \mathbb{P}_{2}(t) \rightarrow \mathbb{P}_{2}(t)$ be the linear transformation defined by

$$
F(1)=1+t^{2}, F(t)=2+t+t^{2} \text { and } F\left(t^{2}\right)=-1+t-2 t^{2}
$$

(a) Write down the matrix representation of F relative to the basis $S=\left\{1, t, t^{2}\right\}$.

Solution:

$$
[F]_{S}=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 1 \\
1 & 1 & -2
\end{array}\right]
$$

(b) Find the kernel of F.

Solution: First reduce the matrix $[F]_{S}$ in part (a) to its echelon form, which is

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

So $\operatorname{Ker} F=\operatorname{span}\left\{\left[\begin{array}{c}3 \\ -1 \\ 1\end{array}\right]\right\}$. In other words, $\operatorname{Ker} F$ is spanned of one polynomial $3-t+t^{2}$.
(c) Find the dimension of the image of F.

Solution:

$$
\operatorname{dim}(\operatorname{Im} F)+\operatorname{dim}(\operatorname{Ker} F)=3
$$

From part (b), we know that $\operatorname{dim}(\operatorname{Ker} F)=1$. So $\operatorname{dim}(\operatorname{Im} F)=2$.
(d) Is F is an isomorphism? Explain.

Solution: Since $\operatorname{Ker} F$ is not equal to the zero vector space $\{0\}$, we see that F is not an isomorphism.

Question 5. (10 pts)
Find all eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{cc}
4 & 2-i \\
2+i & 0
\end{array}\right]
$$

Solution:

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
4-\lambda & 2-i \\
2+i & -\lambda
\end{array}\right|=-\lambda(4-\lambda)-5=(\lambda-5)(\lambda+1)
$$

When $\lambda=5$, the eigenvector is

$$
v=\left[\begin{array}{c}
(2-i) \\
1
\end{array}\right]
$$

When $\lambda=-1$, the eigenvector is

$$
w=\left[\begin{array}{c}
-1 \\
(2+i)
\end{array}\right]
$$

Question 6. (10 pts)
Let U be the subspace of \mathbb{R}^{4} spanned by $v_{1}=(1,7,1,7), v_{2}=(0,7,2,7)$ and $v_{3}=$ $(1,8,1,6)$. Find an orthogonal basis of U.

Solution:

$$
\begin{gathered}
w_{1}=v_{1}=(1,7,1,7) \\
w_{2}=v_{2}-\frac{\left\langle w_{1}, w_{2}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}=(-1,0,1,0) \\
w_{3}=v_{3}-\frac{\left\langle w_{1}, w_{3}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}-\frac{\left\langle w_{2}, w_{3}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}=(0,1,0,1)
\end{gathered}
$$

Question 7. (10 pts)

Let V be the vector space spanned by the basis $S=\{1, \cos t, \sin t\}$. Determine whether the functions

$$
\begin{aligned}
f_{1}(t) & =1+2 \cos t+3 \sin t \\
f_{2}(t) & =2+5 \cos t+7 \sin t \\
f_{3}(t) & =1+3 \cos t+5 \sin t
\end{aligned}
$$

are linearly independent or not. (Hint: try to use the corresponding coordinate vectors with respect to the basis S.)

Solution:

$$
\begin{aligned}
& {\left[f_{1}\right]_{S}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]} \\
& {\left[f_{2}\right]_{S}=\left[\begin{array}{l}
2 \\
5 \\
3
\end{array}\right]} \\
& {\left[f_{3}\right]_{s}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]}
\end{aligned}
$$

Consider the matrix

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 5 & 3 \\
3 & 7 & 5
\end{array}\right]
$$

its echelon form is

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

which has rank 3 . Therefore f_{1}, f_{2} and f_{3} are linearly independent.

Question 8. (10 pts)
Let $\mathbb{P}_{2}(t)$ be the vector space of polynomials with degree ≤ 2. Suppose the linear transformaiton $B: \mathbb{P}_{2}(t) \rightarrow \mathbb{P}_{2}(t)$ is defined by

$$
B(p)=p(0)+p(1) t+p(2) t^{2}
$$

for every polynomial $p \in \mathbb{P}_{2}(t)$. Note that here $p(0)$ (resp. $p(1), p(2)$) is the value of the polynomial $p(t)$ at $t=0$ (resp. $t=1,2$). In particular, $p(0), p(1)$ and $p(2)$ are real numbers, and $p(0)+p(1) t+p(2) t^{2}$ is a polynomial in $\mathbb{P}_{2}(t)$. Show that B is an isomorphism. (Hint: try to use the matrix repsentation of B relative to a basis.)

Solution: Note that

$$
\begin{gathered}
B(1)=1+t+t^{2} \\
B(t)=t+2 t^{2} \\
B\left(t^{2}\right)=t+4 t^{2}
\end{gathered}
$$

So the matrix representation of B relative to the basis $S=\left\{1, t, t^{2}\right\}$ is

$$
[B]_{S}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right]
$$

its echelon form is

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

which is invertible. So B is an isomorphism.

Question 9. (10 pts)
A function f on the complex plane \mathbb{C} is defined by

$$
f(z)=x^{2}+x+2 i x y+i y-y^{2}
$$

where $z=x+i y$. Determine whether f is entire (that is, analytic on the whole complex plane \mathbb{C}).

Solution:

$$
\begin{gathered}
u(x, y)=x^{2}+x-y^{2} \\
v(x, y)=2 x y+y
\end{gathered}
$$

We have

$$
\begin{gathered}
\frac{\partial u}{\partial x}=2 x+1, \quad \frac{\partial u}{\partial y}=-2 y \\
\frac{\partial v}{\partial x}=2 y, \quad \frac{\partial v}{\partial y}=2 x+1
\end{gathered}
$$

Clearly, all $u, v, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ are continuous on \mathbb{C}. Moreover, the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

are satisfied. Therefore, f is entire.

Bonus Question 1. (5 pts)
Consider the system of differential equations in Question 3 again:

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}
$$

where $A=\left[\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right]$. In Question 3 , you have find the general solution $\mathbf{x}(t)$ of the system. Fidn find a specific solution $\mathbf{x}(t)$ such that

$$
\mathbf{x}(0)=\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0) \\
x_{3}(0)
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
$$

when $t=0$. (Such a solution is called a solution of the above system with the given initial condition).

Solution: From the solution of Question 3, we have

$$
\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0) \\
x_{3}(0)
\end{array}\right]=\left[\begin{array}{c}
c_{1}+c_{2}+c_{3} \\
c_{1}+c_{3} \\
-c_{2}+2 c_{3}
\end{array}\right] .
$$

Therefore, we need to solve for c_{1}, c_{2} and c_{3} of the following linear system

$$
\left[\begin{array}{c}
c_{1}+c_{2}+c_{3} \\
c_{1}+c_{3} \\
-c_{2}+2 c_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
$$

which has a unique solution $c_{1}=2, c_{2}=-3$ and $c_{3}=-1$. So the solution satisfying the given initial condition is

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-e^{-2 t}-e^{4 t} \\
2 e^{-2 t}-e^{4 t} \\
3 e^{-2 t}-2 e^{4 t}
\end{array}\right]
$$

